
SourceXtractor++ Documentation
Release 1.0.0

SourceXtractor++ team

September 22, 2021

CONTENTS

1 Contents 1
1.1 Introduction . 1
1.2 License . 1

1.2.1 Code . 1
1.2.2 Documentation . 2

1.3 Installing the software . 2
1.3.1 Hardware requirements . 2
1.3.2 Obtaining SourceXtractor++ . 2

1.4 Using SourceXtractor++ . 5
1.4.1 Input files . 5
1.4.2 Output . 6
1.4.3 Configuration . 7

1.5 Processing . 10
1.5.1 Modeling the background . 10
1.5.2 Weighting . 13
1.5.3 Flagging . 14

1.6 Measuring . 15
1.6.1 The measurement configuration script . 15
1.6.2 Measurements . 17

1.7 Configuration API Reference . 25
1.7.1 argv . 25
1.7.2 output . 26
1.7.3 measurement_images . 26
1.7.4 aperture . 30
1.7.5 model_fitting . 30

2 Indices and tables 41

Bibliography 43

Python Module Index 45

Index 47

i

ii

CHAPTER

ONE

CONTENTS

1.1 Introduction

SourceXtractor++ (Source-Extractor ++) is a program that extracts a catalog of sources from astronomical im-
ages. It is the successor to the original SExtractor package [1]. SourceXtractor++ has been completely
rewritten in C++ and improves over its predecessor in many ways:

• Support for multiple “measurement” images

• Optimized multi-object, multi-frame model-fitting engine

• Possibility to define complex priors and dependencies for model parameters

• Flexible, Python-based configuration file

• Efficient image data caching

• Multithreaded processing

• Modular code design with support for third-party plug-ins

SourceXtractor++ is a collaborative effort between the Astronomy Department, Université de Genève, the Fac-
ulty of Physics, LMU Munich, and the IAP (CNRS/Sorbonne Université).

1.2 License

1.2.1 Code

The SourceXtractor++ code is licensed under a LGPL v3 license:

SourceXtractor++ is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation, either version 3.0 of the License, or (at your
option) any later version.

SourceXtractor++ is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

1

https://github.com/astrorama/SourceXtractorPlusPlus
http://astromatic.net/software/sextractor
https://www.unige.ch/sciences/astro/en/
https://www.en.physik.uni-muenchen.de/
https://www.en.physik.uni-muenchen.de/
http://www.iap.fr/
https://github.com/astrorama/SourceXtractorPlusPlus
https://www.gnu.org/licenses/lgpl.html

SourceXtractor++ Documentation, Release 1.0.0

1.2.2 Documentation

This documentation and its content are licensed under a Creative Commons Attribution-ShareAlike 4.0 Interna-
tional License:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made.
You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under
the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally restrict others
from doing anything the license permits.

1.3 Installing the software

1.3.1 Hardware requirements

Terminal

SourceXtractor++ runs in (ANSI) text-mode from a shell. A graphical environment is not necessary to operate
the software.

Memory

Memory requirements depend mostly on the number of images to be analyzed. A rule of thumb is that
SourceXtractor++ requires about 100MB of resident memory per input frame. Extra-memory is taken advantage
of through caching of pixel data.

CPUs

SourceXtractor++’s measurement pipeline is multithreaded and can take advantage of multiple CPU cores. As
of version 0.13, SourceXtractor++ scales reasonably well up to 8 cores.

1.3.2 Obtaining SourceXtractor++

From Fedora or EPEL repositories

SourceXtractor++ is available in Fedora 30 and greater, and in EPEL 7 as well. On those platforms, you can use
your package manager to install in the usual way:

dnf install sourcextractor++

2 Chapter 1. Contents

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://src.fedoraproject.org/rpms/sourcextractor++

SourceXtractor++ Documentation, Release 1.0.0

From Anaconda Cloud

SourceXtractor++ is also available for Linux and MacOS via Anaconda cloud. You can install it as follows:

$ conda install -c conda-forge -c astrorama sourcextractor

Or you can, of course, add permanently the astrorama channel to your conda configuration:

$ conda config --add channels conda-forge
$ conda config --add channels astrorama
$ conda install sourcextractor

It is recommended to install SourceXtractor++ into its own environment to avoid dependency conflicts.

From Sources

The source package may be downloaded from the official GitHub repository. Links to binary packages for a
selection of operating systems are also available at the URL above.

SourceXtractor++ relies on the Elements and Alexandria packages, which may be downloaded from Astro-
rama repositories. They are also available in Fedora and EPEL as elements and elements-alexandria.

It also requires the following packages for installation:

• Boost

• CCFITS

• CFITSIO

• FFTW3

• Log4cpp

• OpenCV

• Python (Python3.x recommended)

• Python-AstroPy

• WCSlib

The following packages are optional:

• Readline

• Ncurses (progress bar display)

• LevMar (model fitting engine)

• GSL (model fitting engine)

All or most of these packages are available in the main Linux distributions. You will also need the -devel version
of the packages if you compile SourceXtractor++ from the source.

If you have installed Elements and Alexandria from your distribution repository (right now, only in Fedora), you
can skip the following section.

dnf install elements-devel elements-alexandria-devel

Elements is a C++ and CMake framework. It is capable of managing the dependencies of the projects that are
based on it, as long as it knows where to find them. By convention, this location usually is ~/Work/Projects,
but you can choose any other.

$ export CMAKE_PROJECT_PATH=~/Work/Projects
$ export CMAKE_PREFIX_PATH=$CMAKE_PROJECT_PATH/Elements/cmake
$ mkdir -p $CMAKE_PROJECT_PATH

1.3. Installing the software 3

https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html
https://github.com/astrorama/SourceXtractorPlusPlus
http://github.com/astrorama/Elements
http://github.com/astrorama/Alexandria
https://github.com/astrorama
https://github.com/astrorama
https://www.boost.org/
https://heasarc.gsfc.nasa.gov/fitsio/CCfits/
https://heasarc.gsfc.nasa.gov/fitsio/
http://www.fftw.org/
http://log4cpp.sf.net/
https://opencv.org/
https://www.python.org/
https://www.astropy.org/
https://www.atnf.csiro.au/people/mcalabre/WCS/index.html
https://tiswww.case.edu/php/chet/readline/rltop.html
https://invisible-island.net/ncurses/
http://users.ics.forth.gr/~lourakis/levmar
https://www.gnu.org/software/gsl

SourceXtractor++ Documentation, Release 1.0.0

Since Python 2 has been deprecated since the 1st of January 2020, it is recommended to tell Elements and other
projects to use Python 3 instead. You can also disable the build of documentation with -DUSE_SPHINX=OFF.

$ export CMAKEFLAGS="-DPYTHON_EXPLICIT_VERSION=3 -DUSE_SPHINX=OFF"

You can always add for convenience these environment variables to your .bashrc, or the one corresponding to
your shell.

Elements can handle multiple versions of a given project, or with just one. For the later, it suffices to clone the
project into $CMAKE_PROJECT_PATH.

$ cd $CMAKE_PROJECT_PATH
$ git clone https://github.com/astrorama/Elements.git --branch 5.10
$ cd Elements
$ make install -j # -j uses multiple cores

Similarly for Alexandria:

$ cd $CMAKE_PROJECT_PATH
$ git clone https://github.com/astrorama/Alexandria.git --branch 2.15
$ cd Alexandria
$ make install -j

If you have compiled and installed Elements and Alexandria as described on the above section, make sure you are
using the proper environment.

$ export CMAKE_PROJECT_PATH=~/Work/Projects
$ export CMAKE_PREFIX_PATH=$CMAKE_PROJECT_PATH/Elements/cmake

For system-wide installs, this step is not necessary.

Configure the project flags if you have not yet done it:

$ export CMAKEFLAGS="-DPYTHON_EXPLICIT_VERSION=3 -DUSE_SPHINX=OFF"

As a reminder, that tells SourceXtractor++ to compile with Python 3, and not to build the documentation.
SourceXtractor++ can be built with Python 2, but this is strongly discouraged.

The sources can be obtained either from the releases as a compressed archive, or cloned with git the usual way.

If you download an archived version, you need to uncompress it:

$ unzip SourceXtractorPlusPlus-<version>.zip

A new directory called SourceXtractorPlusPlus-<version> should now appear at the current location on
your disk.

If you opt for cloning the repository, make sure you are pointing to the latest commit in the master branch.

$ git pull

Either way, enter the directory you have just created, and build the software.

$ cd SourceXtractorPlusPlus
$ make -j4

After the binaries are now compiled and available, SourceXtractor++ can be run with:

$ ~/Work/Projects/SourceXtractorPlusPlus/build/run sextractor++ --help

4 Chapter 1. Contents

https://github.com/astrorama/SourceXtractorPlusPlus/releases/latest

SourceXtractor++ Documentation, Release 1.0.0

1.4 Using SourceXtractor++

SourceXtractor++ is run from the shell with the following syntax:

$ sourcextractor++ [--<option> [<arg>]]

The parts enclosed within brackets are optional. Any --<option> <arg> or --<option>=<arg> statement in
the command-line overrides the corresponding definition in the configuration file or any default value (see config-
uration section).

1.4.1 Input files

SourceXtractor++ accepts images stored in FITS (Flexible Image Transport System) [2]. Contrary to the origi-
nal SExtractor, SourceXtractor++ relies on the FITSIO library and is therefore compatible with all standard
variants of FITS, including compressed images. Both “Basic FITS” (one single header and one single body) and
MEF (Multi-Extension FITS) files are recognized. Binary SourceXtractor++ catalogs produced from MEF
images are MEF files themselves. If the catalog output format is set to ASCII, all catalogs from the individual
extensions are concatenated in one big file.

Currently, only the first data-plane of multichannel images with NAXIS > 2, is loaded.

In SourceXtractor++, as in all similar programs, FITS axis #1 is traditionally referred to as the x axis, and FITS
axis #2 as the y axis.

Detection and measurement images

SourceXtractor++ distinguishes between two kinds of science images, detection and measurement images:

• The detection image is where the sources are extracted. Rough estimates of position and shapes are ob-
tained from the detection image; they define the photometric apertures and initial guesses for model-fitting
parameters that will be applied to the measurement images. Currently there can be only one detection image
per run, and sources are detected from a single channel.

• Measurement images are where the sources are measured. There can be hundreds (or even more) of them.
They need not share the same pixel grid or have the same size as the detection image, which they may only
partially overlap. However if the pixel grid is different, both detection and measurement image headers must
contain valid WCS information [3, 4]. SourceXtractor++ uses that information to precisely match celestial
positions and areas on all images. A scaling parameter for pixel values can be applied to any measurement
image independently, provided either as a flux_scale optional argument to load_fits_image() in the
Python measurement configuration file, or as the value of a FITS header keyword (FLXSCALE by default).
Note that sources need not be detectable at all on measurement images for the software to work.

Weight-maps

Both detection and measurement images can have their own weight-maps. Weight-maps are companion images
that indicate how “noisy” every science pixel is, in terms of variance. The SourceXtractor++ --weight-image
command line option and the load_fits_image() measurement configuration script command may be used to
specify the names of the input detection and measurement weight-maps, respectively. See the Weighting section
for details.

1.4. Using SourceXtractor++ 5

http://fits.gsfc.nasa.gov
https://heasarc.gsfc.nasa.gov/fitsio/
http://www.stsci.edu/hst/HST_overview/documents/datahandbook/intro_ch23.html
http://www.atnf.csiro.au/people/mcalabre/WCS/index.html

SourceXtractor++ Documentation, Release 1.0.0

Flag-maps

Flag maps are images in integer format having the same dimensions as the science images, with pixel values that
can be used to flag some pixels (for instance, “bad” or noisy pixels). Flag map usage is described in the flagging
section.

PSF models

PSF models are required by the model-fitting module. PSF (Point Spread Function) model files must be provided
as FITS binary tables in the PSFEx format. There must be one PSF model per measurement image.

1.4.2 Output

Catalog

SourceXtractor++ writes out a catalog file with a filename set by the --output-catalog-filename option.
Note that if no output-catalog-filename is set in the command line nor in the configuration file, then the
catalog is printed in ASCII to the standard output.

The --output-catalog-format option sets the format of the output catalog. Currently available options are
FITS for a FITS binary table, and ASCII for an ASCII table.

Output properties

SourceXtractor++ computes only what is required to produce the output catalog and diagnostics. While the
original SExtractor would automatically trigger the measurement processes depending on the columns the user
would like to be included in the catalog, SourceXtractor++ adopts a more coarse-grained and modular approach
through the concept of properties.

Properties regroup several scalar or vector values obtained in the context of a specific image measurement or
processing. Properties are requested by giving as argument to the --output-properties a coma-separated list
of keywords. For example, requesting the PixelCentroid property (the default) adds both the pixel_centroid_x
and pixel_centroid_y columns to the output catalog. Note that additional, custom columns may be inserted in
the catalog through calls to add_output_column in the measurement script.

The --list-output-properties option prints out the complete list of available properties known to
SourceXtractor++. The lists of catalog columns for the requested properties and for all properties are displayed
using --property-column-mapping and --property-column-mapping--all options, respectively.

The complete list of columns and properties currently known to SourceXtractor++ is given below.

Diagnostic files

Additional files can be generated by SourceXtractor++, providing diagnostics about the source extraction and
measurement processes. Currently only check-images, which are FITS images containing maps of various types,
are produced. Each of the following options, followed by a filename, may be set to trigger the production of a
check-image:

• check-image-model-fitting: noiseless image of the best-fitting source models

• check-image-residual: model-fitting residuals

• check-image-background: bicubic-spline-interpolated background model

• check-image-variance: variance map

• check-image-segmentation: map of detected objects after the segmentation stage

• check-image-partition: map of detected objects after the partition stage

6 Chapter 1. Contents

https://en.wikipedia.org/wiki/Point_spread_function
https://psfex.readthedocs.io/en/latest/Appendices.html#psf-file-format-description
https://en.wikipedia.org/wiki/Standard_streams#Standard_output_(stdout)

SourceXtractor++ Documentation, Release 1.0.0

• check-image-grouping: map of detected objects after the grouping stage

• check-image-filtered: filtered copy of the detection image

• check-image-thresholded: filtered, thresholded copy of the detection image

• check-image-auto-aperture: map of automatic photometric apertures

• check-image aperture: map of disk aperturess

• check-image-moffat: noiseless image of the best-fitting extended Moffat models

• check-image-psf: PSF map

1.4.3 Configuration

There are two types of configuration settings: those dedicated purely to measurements, and those related to the
source extraction process and to global operations of SourceXtractor++. Measurement settings can be rather
complex and require a Python configuration script (see the Measurement section). Global configuration settings
may be changed using command-line options (prefixed with a --), however a configuration file is often more
convenient for storing settings that do not change from run to run.

Note: Command-line options can be abbreviated, provided that there is no more than one full matching keyword.
Example: --config-file=foo.conf may be abbreviated as --conf=foo.conf.

The configuration file

SourceXtractor++ searches for the configuration file at the beginning of a run, starting from system repositories
(which makes it possible to apply specific, system-wide configuration settings), to the current repository. Each
time it is run, SourceXtractor++ looks for a configuration file. The name of a dedicated configuration files is
given with:

$sourcextractor++ --config-file sepp.config

Creating a configuration file

SourceXtractor++ dumps all parameters with their default values into a configuration files with:

$sourcextractor++ --dump-default-config > my_sepp.config

Format of the configuration file

Configuration instructions follow the <option> = <value> format. There must be no more than one <option>
= <value> instance per line. Comments must be preceded with a #. Boolean parameters are set/unset with 1/0
such as: output-flush-unsorted=1, and the individual parameters of a parameter list are separted with a “,”
such as output-properties=SourceIDs,PixelCentroid,WorldCentroid

1.4. Using SourceXtractor++ 7

https://github.com/astrorama/SourceXtractorPlusPlus
https://github.com/astrorama/SourceXtractorPlusPlus

SourceXtractor++ Documentation, Release 1.0.0

Configuration parameter list

Here is a complete list of all the configuration parameters known to SourceXtractor++. Please refer to the next
sections for a detailed description of their meaning.

Option Default Use
Generic options
version Print version string
help Produce help message
config-file — Name of a configuration file
log-level INFO Log level: FATAL, ERROR, WARN, INFO (default), DEBUG
log-file — Name of a log file
list-output-properties List the possible output properties for the given input parameters

and exit
property-column-mapping-all Show the columns created for each property
property-column-mapping Show the columns created for each property, for the given con-

figuration
progress-min-interval 5 Minimal interval to wait before printing a new log entry with the

progress report
progress-bar-disable Disable progress bar display

Auto (Kron) photometry options
auto-kron-factor 2.5 Scale factor for AUTO (Kron) photometry
auto-kron-min-radius 3.5 Minimum radius for AUTO (Kron) photometry

Background modelling
background-cell-size 64 Background mesh cell size to determine a value
smoothing-box-size 3 Background median filter size

Check images
check-image-model-fitting — Path to save the model fitting check image
check-image-residual — Path to save the model fitting residual check image
check-image-background — Path to save the background check image
check-image-variance — Path to save the variance check image
check-image-segmentation — Path to save the segmentation check image
check-image-partition — Path to save the partition check image
check-image-grouping — Path to save the grouping check image
check-image-filtered — Path to save the filtered check image
check-image-thresholded — Path to save the thresholded check image
check-image-auto-aperture — Path to save the auto aperture check image
check-image-aperture — Path to save the aperture check image
check-image-moffat — Path to save the moffat check image
check-image-psf — Path to save the PSF check image

Cleaning
use-cleaning Enable the cleaning of sources (remove false detections near

bright objects)
cleaning-minarea 3 Minimum # of pixels above threshold

Detection image
background-value — Background value to be subtracted from the detection image
detection-threshold 1.5 Detection threshold above the background
segmentation-algorithm LUTZ Segmentation algorithm to be used. Currently LUTZ is the only

choice
segmentation-disable-filtering Disables filtering
segmentation-filter — Loads a filter
detection-image — Path to a fits format image to be used as detection image.
detection-image-gain 0 Detection image gain in e-/ADU (0 = infinite gain)
detection-image-flux-scale Detection image flux scale
detection-image-saturation Detection image saturation level (0 = no saturation)
detection-image-interpolation 1 Interpolate bad pixels in detection image
detection-image-interpolation-gap 5 Maximum number if pixels to interpolate over

continues on next page

8 Chapter 1. Contents

SourceXtractor++ Documentation, Release 1.0.0

Table 1.1 – continued from previous page
Option Default Use

External flag options
flag-image-* — FITS file containing the external flag
flag-type-* — The combination type of the external flag (OR, AND, MIN,

MAX, MOST)

Extraction
detect-minarea 3 Minimum # of pixels above threshold
use-attractors-partition Enables the use of attractors for partitioning

Grouping
grouping-algorithm NONE Grouping algorithm to be used (NONE, MOFFAT)
grouping-moffat-threshold 0.02 Threshold used for Moffat grouping.

Magnitude
magnitude-zeropoint 0 Magnitude zero point calibration

Measurement config
python-config-file — Measurements Python configuration file
python-arg — Parameters to pass to Python via sys.argv

Memory usage
tile-memory-limit 512 Maximum memory used for image tiles cache in megabytes
tile-size 256 Image tiles size in pixels

Model Fitting
model-fitting-iterations 1000 Maximum number of iterations allowed for model fitting

Multi-threading
thread-count 4 Number of worker threads (0=disable all multithreading)

Multi-thresholding
partition-multithreshold Activate multithreshold partitioning
partition-threshold-count 32 of thresholds
partition-min-area 3 Minimum area in pixels to consider partitioning
partition-min-contrast 0.005 Minimum contrast for partitioning

Output configuration
output-catalog-filename — The file to store the output catalog
output-catalog-format FITS The format of the output catalog, one of ASCII or FITS
output-properties PixelCentroid The output properties to add in the output catalog

Plugin configuration
plugin-directory — Path to a directory that contains the plugins
plugin — Defines a plugin to load (without file extension). Can be used

multiple times

Variable PSF
psf-filename — PSF image file (FITS format)
psf-fwhm — Generate a Gaussian PSF with the given full-width half-

maximum (in pixels)
psf-pixel-sampling — Generate a Gaussian PSF with the given pixel sampling step size

Weight map
weight-image — Path to a FITS format image to be used as weight image

continues on next page

1.4. Using SourceXtractor++ 9

SourceXtractor++ Documentation, Release 1.0.0

Table 1.1 – continued from previous page
Option Default Use
weight-absolute 0 Is the weight map provided as absolute values or relative to back-

ground
weight-type BACKGROUND Weight image type (BACKGROUND, RMS, VARIANCE,

WEIGHT)
weight-scaling 1 Weight map scaling factor
weight-threshold — Threshold for pixels to be considered bad pixels. In same units

as weight map.
weight-usesymmetry 1 Use object symmetry to replace pixels above the weight thresh-

old for photometry

1.5 Processing

The complete analysis of an image is fully automated (Fig. 1.1). There are three main steps in the processing:
detection, collection and measurement:

• During the detection step, image pixels from the detection image are background-subtracted, filtered and
segmented on-the-fly. The extracted source candidates are then deblended.

• During the collection step, a source model is fit to the detection image. Overlapping sources are identified,
grouped and pruned (“cleaned”).

• During the measurement step, sources are analysed individually or as part of their group. Measurements are
written to the output catalog.

The following sections describe each of these operations in more detail.

1.5.1 Modeling the background

On linear detectors, the value measured at each pixel is the sum of a “background” signal and light coming from the
sources of interest. To be able to detect the faintest objects and make accurate measurements, SourceXtractor++
needs first computing a precise estimate of the background level at any position of the image: a background map.
Strictly speaking, there should be one background map per source, that is, what would the image look like if that
very source was missing. However, one can start by assuming that most discrete sources do not overlap too severely
— which is generally the case for high galactic latitude fields —, and that the background varies smoothly across
the field. SourceXtractor++’s current background model is essentially the same as that of SExtractor [1].

Background estimation

To compute the background map, SourceXtractor++makes a first pass through the pixel data, estimating the local
background in each cell of a square grid that covers the whole frame. The background estimator is a combination
of 𝜅𝜎 clipping and mode estimation, similar to Stetson’s DAOPHOT program [5, 6].

Briefly, the local background histogram is clipped iteratively until convergence at ±3𝜎 around its median. The
mode of the histogram is estimated using:

Mode = 2.5 × Median − 1.5 × Mean. (1.1)

Using simulated images, the expression above was found more accurate with clipped distributions
:cite:1996AAS_117_393B than the usual approximation (e.g., [7]):

Mode = 3 × Median − 2 × Mean. (1.2)

Fig. 1.2 shows that the mode estimation in (1.1) is considerably less affected by source crowding than a simple
clipped mean [8, 9] but it is ≈ 30% noisier. Obviously (1.1) is not valid for any distribution; SourceXtractor++
falls back to a simple median for estimating the local background value if the mode and the median disagree by
more than 30%.

10 Chapter 1. Contents

http://astromatic.net/software/sextractor
http://ascl.net/phpBB3/viewtopic.php?t=23410

SourceXtractor++ Documentation, Release 1.0.0

Image segmentationBackground
subtraction

Detection
image

Detection
weights

Source grouping

Source deblendingImage filtering

Measurement
weights

Measurement
PSF models

Isophotal
measurements

Source cleaning

Measurement
images

Flag maps

Aperture
photometry

Model fitting

Output
catalog

Measurement
plug-in

Background
subtraction

Source fitting

Detection

Measurement

Collection

Fig. 1.1: Layout of the main SourceXtractor++ procedures. Dashed arrows represent optional inputs.

1.5. Processing 11

SourceXtractor++ Documentation, Release 1.0.0

-10

-5

0

5

10

0 5 10 15 20 25 30

C
lip

p
e
d

 M
o
d
e
 (

A
D

U
)

Clipped Mean (ADU)

Fig. 1.2: Simulations of 32×32 pixels background cells contamined by random Gaussian profiles. The true back-
ground lies at 0 ADUs. While being a bit noisier, the clipped “mode” gives a more robust estimate than the clipped
mean in crowded regions.

Background map

Once the values of all background cells have been estimated, a median box filter is applied to suppress possible
local overestimations due to bright stars. Median filtering helps reducing possible ringing effects of the bicubic-
spline around bright features. The final background map is a (natural) bicubic-spline interpolation between grid
cells.

In parallel with the making of the background map, a background noise map, that is, a map of the background
noise standard deviation is produced. It is used as an internal weight map when the weight-type configuration
parameter is set to weight-type=background, which is the default.

Configuration and tuning

Note: All background configuration parameters also affect background noise maps.

The choice of the background-cell-size is very important. If it is too small, the background estimation is
affected by the presence of objects and random noise. Most importantly, part of the flux of the most extended
objects can be absorbed into the background map. If the cell size is too large, it cannot reproduce the small scale
variations of the background. Therefore a good compromise must be found by the user. For reasonably sampled
images, cell sizes between 32 to 512 pixels are generally appropriate.

The user has some control over background map filtering by specifying the size of the median filter box . The
smoothing-box-size configuration parameter sets the box size in pixels. smoothing-box-size=3 is the de-
fault and is sufficient in most cases. smoothing-box-size=1 deactivates filtering. Larger dimensions may occa-
sionally be used to compensate for small background cell sizes, or in the presence of large image artifacts.

By default, the computed background maps are automatically subtracted from input images. However there are sit-
uations where subtracting a constant from the detection image may be more relevant, e.g., for images with strongly
non-Gaussian background noise pdf (Probability Density Function)s). The background-value configuration pa-
rameter may be set to subtract a specific value from the input detection image, instead of the background map. It
is unset by default.

12 Chapter 1. Contents

https://en.wikipedia.org/wiki/Probability_density_function

SourceXtractor++ Documentation, Release 1.0.0

Computing cost

The background estimation operation is generally I/O (Input/Output)-bound, unless the image file already resides
in the disk cache.

1.5.2 Weighting

The noise level in astronomical images is often fairly constant, that is, constant values for the gain, the background
noise and the detection thresholds can be used over the whole frame. Unfortunately in some cases, like strongly
vignetted or composited images, this approximation is no longer good enough. This leads to detecting clusters
of detected noise peaks in the noisiest parts of the image, or missing obvious objects in the most sensitive ones.
SourceXtractor++ is able to handle images with variable noise. It does it through weight maps, which are frames
having the same size as the images where objects are detected or measured, and which describe the noise intensity
at each pixel. These maps are internally stored in units of absolute variance (in 𝐴𝐷𝑈2). We employ the generic
term weight map because these maps can also be interpreted as quality index maps: infinite variance (≥ 1030 by
definition in SourceXtractor++) means that the related pixel in the science frame is totally unreliable and should
be ignored.

The variance format was adopted as it linearizes most of the operations done over weight maps (see below). How-
ever noise covariances between pixels are ignored.

Effect of weighting

Weight-maps modify the working of SourceXtractor++ in the several ways:

• The detection threshold 𝑡 above the local sky background in the detection image is adjusted for each pixel
𝑖 with variance 𝜎2

𝑖 : 𝑡𝑖 =detection-threshold×
√︀
𝜎2
𝑖 , where detection-threshold is expressed in

units of standard deviations of the background noise. Pixels having a variance above the threshold set with
the --weight-threshold command line option are never detected. This may result in splitting objects
crossed by a group of bad pixels. Interpolation should be used to avoid this problem. If convolution filtering
is applied for detection then the variance map is also convolved.

• The cleaning process takes into account the exact individual thresholds assigned to each pixel before deciding
whether a faint detections must be merged with a larger one.

• Bad pixels are discarded from the background statistics. If more than 50% of the pixels in a background
cell are bad, then the background and the standard deviation values are discarded and interpolated from the
nearest valid cells.

• Measurement uncertainties assume that the standard deviation of the local background noise is simply
√︀
𝜎2
𝑖 .

• Detection image pixels with weights beyond weight-threshold (above or below depending on the
--weight-type option argument, see below) are discarded.

Caution: Although raw Charge-Coupled Device exposures have essentially white noise, this is not the case
for the resampled images that enter image stacks; resampling induces a significant amount of noise correlation
between neighboring pixels. Despite the fact that the correlation length is often smaller than the patterns to be
detected or measured, and constant over the image, noise correlations bias the weight rescaling process. It is
therefore recommended to deactivate the weight-map rescaling when working with resampled image and use
weight-maps with absolute values whenever possible.

1.5. Processing 13

https://en.wikipedia.org/wiki/Charge-coupled_device

SourceXtractor++ Documentation, Release 1.0.0

Weight-map formats

Detection weight-map

SourceXtractor++ reads and converts to its internal variance format several types of weight-maps. The detec-
tion weight-map can either be read from a FITS file specified by the --weight-image command line option, or
computed internally. The type of detection weight-map must be selected using the --weight-type command-line
option. Valid weight_type values are:

• background : The science image itself is used to compute internally a variance map (the --weight-type
command-line option is ignored). Robust (3𝜎-clipped) variance estimates are first computed within the
same background cells as the background model1. The resulting low-resolution variance map is then
bicubic-spline-interpolated on the fly to produce the actual full-size variance map.

• rms : The FITS image specified using the --weight-image option is a weight-map in units of standard
deviations (in ADUs per pixel).

• variance : The FITS image specified using the --weight-image option is a weight-map in units of rela-
tive variance.

• weight : The FITS image specified using the --weight-image option is a weight-map in units of inverse
variance.

Measurement weight-map

Measurement weight-maps are managed identically to detection weight-maps, except that configuration must be
done through the load_fits_image() command options in the measurement configuration script, instead of
command line options.

1.5.3 Flagging

Flags are binary attributes of the detected sources. They are set to indicate, e.g., that a source is saturated or that
it has been deblended. Flags are grouped in columns in the SourceXtractor++ output catalog. Each column
element is an integer, comprising several flag bits as a sum of powers of 2. Many properties produce flag columns:
AperturePhotometry (aperture_flags), AutoPhotometry (auto_flags), FlexibleModelFitting (fmf_flags), . . . For
example, the source_flags column is produced by the SourceFlags property; a saturated detection close to an image
boundary will have source_flags = 4+8 = 12 in decimal.

External flags

External flags are derived from Flag-maps. Flag maps are images in (unsigned) integer format having the same
size as the detection image, where each integer represents a set of flag bits as a sum of powers of 2.

Flag images are specified as arguments to the --flag-image-* option(s), where the * represents an arbitrary
character or string; for instance: --flag-image-cosmic cosmic.flag.fits.

Different combinations of flags can be applied within the isophotal footprint that defines objects, to produce a
unique integer that will be written to the catalog. How the flags are combined within the isophotal footprint can
bet set with the --flag-type-* option(s). Valid flag-type values are:

• or : An arithmetic (bitwise) OR between pixels is applied to all flags independently. For instance if a pixel
is set to 9 = 10012 and another to 5 = 01012, then the result will be 10012 ∨ 01012 = 11012 = 13

• and : An arithmetic AND between pixels is applied to all flags independently. For instance with inputs from
the previous example the result will be 10012 ∧ 01012 = 00012 = 1

• min : The result is the minimum value of the flag combination within the isophotal footprint. For instance
with inputs from the previous example the result will be min(9, 5) = 5

1 The background map filtering procedure is also applied to the variance map.

14 Chapter 1. Contents

SourceXtractor++ Documentation, Release 1.0.0

• max : The result is the maximum value of the flag combination within the isophotal footprint. For instance
with inputs from the previous example the result will be max(9, 5) = 9

• most: The result is the (non-zero) flag combination that is most represented within the isophotal footprint.
For instance if a pixel is set to 9 and two other pixels are set to 5, then the result will be 5.

1.6 Measuring

Once sources have been detected and deblended, they enter the measurement phase.

SourceXtractor++ performs three categories of measurements: isophotal, aperture, and model-fitting.

Isophotal measurements are done on the detection image only. They exclusively take into account object pixels
with values exceeding the detection threshold. They run quick and are reasonably immune to light contamina-
tion by neighbors. However as such they generally only provide heavily biased estimates of physical quantities,
especially for fluxes. Therefore their usage should be restricted to rough estimation and to make first guesses.
Isophotal measurements do not require any specific configuration. They depend only on detection, deblending and
background-subtraction settings.

Aperture measurements are done on the measurement images. They involve pixels within geometric apertures,
such as disks and ellipses. The size and shape of the apertures may be fixed, or adaptive to every object. Aperture
measurements are largely sub-optimal from the point-of-view of SNR (Signal-to-Noise Ratio). However they are
generally tolerant to object shape variations, and offer a good control of measurement biases. They can be very
sensitive to contamination by the light of neighbors, although this can be mitigated (see ??)

Model-fitting measurements are performed on the measurement images. They are close to optimum from the
point-of-view of SNR, but they require accurate PSF models (one per image). PSF models can be computed using
the PSFEx package. SourceXtractor++ can fit mixtures of models to clumps of overlapping objects, which is
generally effective at taking care of the contamination by the light of neighbors. The main inconvenient of model-
fitting is that it is much slower than aperture photometry.

1.6.1 The measurement configuration script

Measurement settings, as well as grouping procedures and catalog outputs must be defined in a configuration
script that uses the Python language: the measurement configuration script. The script filename is set with the
python-config-file configuration option. Thanks to its flexibility, the Python language makes it possible to
set up arbitrarily complex rules to finely control the measurement process. SourceXtractor++’s configuration
library classes and functions must be imported at the beginning of the script:

from sourcextractor.config import *

The same goes for other Python libraries that might be needed for the current configuration, such as glob for
filename expansion, math or NumPy for numerical computations, . . .

Caution: The measurement configuration script is excusively meant to be executed by the
SourceXtractor++ built-in Python interpreter, and cannot be run on its own.

1.6. Measuring 15

https://en.wikipedia.org/wiki/Signal-to-noise_ratio
https://en.wikipedia.org/wiki/Point_spread_function
http://astromatic.net/software/psfex
https://python.org
https://docs.python.org/library/glob.html
https://docs.python.org/library/math.html
https://numpy.org/

SourceXtractor++ Documentation, Release 1.0.0

Measurement images

Measurement images are scientific images stored as FITS files and used only for measurements. Every measure-
ment image can be associated a PSF model (PSFEx’s .psf file), and a weight map. The load_fits_image()
function creates a measurement image from a FITS image filename; for example:

mesimage = load_fits_image("image.fits")

The list of currently loaded measurement images can be displayed using the print_measurement_images()
function. The following will print the list of measurement images on screen (more precisely, on the stderr channel):

print_measurement_images()

In practice, one will generally want to load several images with a single instruction, not one by one. However
before addressing this point we need to introduce the concept of grouping.

Grouping and splitting

SourceXtractor++ measures the properties of sources from instances spread across multiple exposures. Each
exposure has its own context defined by a specific combination of filter, instrument, epoch, etc. Depending on
science goals, one may choose to group images by time of observation (e.g., to build light curves), filter (for
regular photometry), . . . This is the purpose of SourceXtractor++’s grouping (and splitting) mechanisms.

There are two types of groups: image groups and measurement groups.

Image groups

Image groups offer a convenient way to load many images, and group them according to specific criteria. The most
efficient way to instantiate an image group is through the load_fits_images() function:

imagegroup = load_fits_images(["image_01.fits", "image_02.fits"])

In practice, the easier way to load large series of images, PSF models and weight maps is through filename expan-
sion and sorting, for instance:

imagegroup = load_fits_images(
sorted(glob("image_??.fits")),
psfs=sorted(glob("image_??.psf")),
weights=sorted(glob("image_??.weight.fits")),
weight_type='weight'

)

All non-empty lists must contain the same number of items. It is possible to add images or another group to a
pre-existing image group using the add_images() method, e.g.:

anotherimage = load_fits_image(
"anotherimage.fits",
psf="anotherimage.psf",
weight="anotherimage.weight.fits",
weight_type='weight'

)
imagegroup.add_images(anotherimage)

16 Chapter 1. Contents

http://fits.gsfc.nasa.gov
https://en.wikipedia.org/wiki/Standard_streams#Standard_error_(stderr)

SourceXtractor++ Documentation, Release 1.0.0

Splitting

Now, within an image group one may want to create subgroups based on, e.g., band pass filters or epochs. This is
easily accomplished using the split() method. Splitting may be done according to a FITS header keyword with
the ByKeyword() callable. For instance, to generate subgroups each with a different filter (assuming all image
headers contain the FILTER keyword):

imagegroup.split(ByKeyword('FILTER'))

ByPattern() also checks for a FITS header keyword, with the difference that a regular expression provided by
the user is applied to the keyword value. The first matching group acts as the grouping key, which means that a
‘capturing group (within parentheses) <https://www.regular-expressions.info/brackets.html>’_ must be present in
the regular expression. For instance, the following command groups images by year of observation, ignoring the
rest of the date:

imagegroup.split(ByPattern('DATE-OBS', "^(\d{4})"))

Note: Subgroups can themselves be split into subgroups, at any level.

Accessing subgroups

Image subgroups are custom maps. One can access individual subgroups much like a Python dictionary. In
the first group splitting example above, the subgroup of images from year 2007 (if they exists) is simply image-
group[‘2007’], and looping through all subgroups is as simple as:

for year, subgroup in imagegroup:
print(int(year), subgroup)

Measurement groups

Measurements are applied to measurement groups and subgroups. Measurement groups are similar to image
groups, although they maintain additional information and their image and subgroup content cannot be updated.
A measurement group (MeasurementGroup) is instanciated from a completed image groups, e.g.,

mesgroup = MeasurementGroup(imagegroup)

Like image subgroups, measurement subgroups are custom maps and can be managed in a similar way.

1.6.2 Measurements

Isophotal measurements

Position and shape

The following quantities are derived from the spatial distribution 𝒮 of pixels detected above the detection threshold
(see description).

Important: Unless otherwise noted, the pixel values used for computing “isophotal” positions and shapes are
taken from the filtered, background-subtracted detection image.

1.6. Measuring 17

https://en.wikipedia.org/wiki/Regular_expression
https://www.regular-expressions.info/brackets.html
https://en.wikipedia.org/wiki/Associative_array
https://docs.python.org/3/tutorial/datastructures.html#dictionaries

SourceXtractor++ Documentation, Release 1.0.0

Photometry

Aperture photometry

Besides isophotal, PSF and model-fitting flux estimates, SourceXtractor++ can currently perform two types of
aperture flux measurements: fixed-aperture and adaptive-aperture.

Both types are applied to the measurement image(s). In SourceXtractor++ runs with only a detection image it
is necessary to define the detection image as measurement in a python configuration files such as:

from glob import glob
import numpy as np
from sourcextractor.config import *

top = load_fits_image(
'../EUC_MER_BGSUB-MOSAIC-VIS_TILE79171-SM.fits',
weight='../EUC_MER_MOSAIC-VIS-RMS_TILE79171-SM.fits',
weight_type='rms',
constant_background = 0.0,
weight_absolute=1

)

mesgroup = MeasurementGroup(top)

all_apertures = []
for img in mesgroup:

all_apertures.extend(add_aperture_photometry(img, 10))
add_output_column('aperture', all_apertures)

Fixed-aperture flux

The fixed aperture flux measurements are requested with output-properties=...,AperturePhotometry,.
... The diameter of the aperture is specified in the python configuration file (see above) with all_apertures.
extend(add_aperture_photometry(img,<diameter [pix]>)). It is possible to give a vector with several
diameters [diam_1, diam_2, diam_3, ...].

It is also necessary to append the aperture measurements to the output with a given column name such as
add_output_column('aperture', all_apertures). The measurements have the dimension n x m for each
object with n the number of measurement images and m the number of diameters.

The fixed aperture checkimage is specified with check-image-aperture=<name.fits> and provides a visual
impression of the apertures for each measurement image.

Automatic aperture flux

SourceXtractor++’s automatic aperture photometry routine derives from Kron’s “first moment” algorithm [10]:

[10] and [9] have shown that for stars and galaxy profiles convolved with Gaussian seeing, ≥ 90% of the flux is
expected to lie inside a circular aperture of radius 𝑘𝑟Kron with 𝑘 = 2, almost independently of the magnitude.
Experiments have shown [1] that this conclusion remains unchanged if one replaces the circular aperture with the
“Kron elliptical aperture” 𝒦 with reduced pseudo-radius 𝑘𝑟Kron.

Automatic aperture flux measurements are requested with output-properties=...,AutoPhotometry,....
The scale factor 𝑘 for the Kron radius 𝑟Kron and the minimal Kron radius 𝑟Kron,min can be adjusted with the
parameters auto-kron-factor= and auto-kron-min-radius=, respectively. The measurements have the di-
mension n for each object with n the number of measurement images.

The automatic aperture checkimage is specified with check-image-auto-aperture=<name.fits> and pro-
vides a visual impression of the automatic apertures for each measurement image.

18 Chapter 1. Contents

SourceXtractor++ Documentation, Release 1.0.0

Model fitting

Fitting procedure

SourceXtractor++ can fit models to the images of detected objects. The fit is performed by minimizing the loss
function

𝜆(𝑞) =
∑︁
𝑖

(︂
𝑔

(︂
𝑝𝑖 − 𝑚̃𝑖(𝑞)

𝜎𝑖

)︂)︂2

+
∑︁
𝑗

(︂
𝑓𝑗(𝑞) − 𝜇𝑗

𝑠𝑗

)︂2

(1.3)

with respect to components of the model parameter vector 𝑞. 𝑞 comprises parameters describing the shape of the
model and the model central coordinates 𝑥.

Modified least squares

The first term in (1.3) is a modified weighted sum of squares that aims at minimizing the residuals of the fit. 𝑝𝑖,
𝑚̃𝑖(𝑞) and 𝜎𝑖 are respectively the pixel value above the background, the value of the resampled model, and the
pixel value uncertainty at image pixel 𝑖. 𝑔(𝑢) is a derivable monotonous function that reduces the influence of large
deviations from the model, such as the contamination by neighbors (Fig. 1.3):

𝑔(𝑢) = 𝑢0 arsinh
𝑢

𝑢0
. (1.4)

𝑢0 sets the level below which 𝑔(𝑢) ≈ 𝑢. In practice, choosing 𝑢0 = 𝜅𝜎𝑖 with 𝜅 = 10 makes the first term in (1.3)
behave like a traditional weighted sum of squares for residuals close to the noise level.

Caution: The cost function in (1.3) is optimized for noise distributions with a Gaussian core and makes model-
fitting in SourceXtractor++ appropriate only for image noise with a pdf symmetrical around the mean.

Fig. 1.3: Effect of the modified least squares loss function on fitting a model to a galaxy with a bright neighbor.
Left: the original image; Middle: residuals of the model fitting with a regular least squares (𝜅 = +∞); Right:
modified least squares with 𝜅 = 10.

The vector 𝑚̃(𝑞) is obtained by convolving the high resolution model 𝑚(𝑞) with the local PSF model 𝜑 and ap-
plying a resampling operator R(𝑥) to generate the final model raster at position 𝑥 at the nominal image resolution:

𝑚̃(𝑞) = R(𝑥)(𝑚(𝑞) * 𝜑). (1.5)

R(𝑥) depends on the pixel coordinates 𝑥 of the model centroid:

R𝑖𝑗(𝑥) = ℎ (𝑥𝑗 − 𝜂.(𝑥𝑖 − 𝑥)) , (1.6)

where ℎ is a 2-dimensional interpolant (interpolating function), 𝑥𝑖 is the coordinate vector of image pixel 𝑖, 𝑥𝑗 the
coordinate vector of model sample 𝑗, and 𝜂 is the image-to-model sampling step ratio (sampling factor) which is
by default defined by the PSF model sampling. We adopt a Lánczos-4 function [11] as interpolant.

1.6. Measuring 19

http://en.wikipedia.org/wiki/Least_squares#Weighted_least_squares

SourceXtractor++ Documentation, Release 1.0.0

Configuring model-fitting

The model-fitting process can be precisely defined and tuned in the measurement configuration Python script.

Model parameters

In SourceXtractor++, any of the model parameters 𝑞𝑗 may be a constant parameter, a free parameter, or a de-
pendent parameter.

Constant parameters

In the model fitting configuration, constant parameters are declared using the ConstantParameter() construct:

size = ConstantParameter(42)

One can also use a lambda expression based on actual measurements for the current object:

size = ConstantParameter(lambda o: 2 * o.get_radius())

Free parameters

Free parameters are adjusted by minimizing 𝜆(𝑞) in (1.3). They are declared using the FreeParameter() con-
struct. The free parameter initial value follows the same rules as the constant parameter value: it may be defined
as a simple number supplied by the user, e.g.:

size = FreeParameter(42, range)

or as a lambda expression, such as:

size = FreeParameter(lambda o: 2.5 * o.get_radius(), range)

Many model parameters are valid only over a restricted domain. Fluxes, for instance, cannot be negative. The
purpose of the range argument is to define the boundaries of the domain. In SourceXtractor++, this domain
restriction is achieved through a change of variables, applied individually to every model parameter:

𝑞𝑗 = 𝑓𝑗(𝑞
(min)
𝑗 , 𝑞

(max)
𝑗 , 𝑄𝑗). (1.7)

The “model” variable 𝑞𝑗 is bounded by the lower limit 𝑞(min)
𝑗 and the upper limit 𝑞(max)

𝑗 by construction. The
“engine” variable 𝑄𝑗 can take any value, and is actually the parameter that is being adjusted in the fit, although it
does not have any physical meaning.

Parameter range

The Range() construct is used to set 𝑞(min)
𝑗 , 𝑞(max)

𝑗 , and 𝑓𝑗():

range = Range((-1,1), RangeType.LINEAR)

The first argument is a tuple of 2 numbers specifying the lower and upper limits of the range. The
range type defines 𝑓𝑗(). Currently supported range types are linear (RangeType.LINEAR) and exponential
(RangeType.EXPONENTIAL). Linear ranges are appropriate for parameters such as positions or shape indices.
Exponential ranges are better suited to strictly positive parameters with a large dynamic range, such as fluxes and
aspect ratios:

20 Chapter 1. Contents

https://en.wikipedia.org/wiki/Anonymous_function
https://docs.python.org/tutorial/datastructures.html#tuples-and-sequences

SourceXtractor++ Documentation, Release 1.0.0

range = Range((0.01,100), RangeType.EXPONENTIAL)

The relation between model and engine parameters is plotted Fig. 1.4 for both examples. Table 1.2 details the
formula applied for currently supported range types.

−1.0 −0.5 0.0 0.5 1.0
qx(model)

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

Q
x
(e

ng
in

e)

0.01 0.1 1 10 100

qaspect(model)

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

Q
as

p
ec

t(
en

gi
ne

)

Fig. 1.4: Engine vs model parameters. Left: example of a linear range (x position parameter in the range]− 1, 1[).
Right: example of an exponential range (aspect ratio parameter in the range]0.01, 100[). Note the logarithmic scale
of the abcissa in the second example.

Table 1.2: Types of changes of variables applied to model parameters

Type Model 𝑓
−1

→ Engine Engine 𝑓→ Model Examples
Unbounded (linear) 𝑄𝑗 = 𝑞𝑗 𝑞𝑗 = 𝑄𝑗

Position angles

RangeType.LINEAR 𝑄𝑗 = ln
𝑞𝑗−𝑞

(min)
𝑗

𝑞
(max)
𝑗 −𝑞𝑗

𝑞𝑗 =
𝑞
(max)
𝑗 −𝑞

(min)
𝑗

1+exp−𝑄𝑗
+𝑞

(min)
𝑗

positions
Sersic index

RangeType.EXPONENTIAL𝑄𝑗 = ln
ln 𝑞𝑗−ln 𝑞

(min)
𝑗

ln 𝑞
(max)
𝑗 −ln 𝑞𝑗

𝑞𝑗 =

𝑞
(min)
𝑗

ln 𝑞
(max)
𝑗 −ln 𝑞

(min)
𝑗

1+exp−𝑄𝑗
fluxes
aspect ratios

In practice, we find this approach to ease convergence and to be much more reliable than a box constrained algorithm
[12].

1.6. Measuring 21

SourceXtractor++ Documentation, Release 1.0.0

Predefined free parameters

SourceXtractor++ comes with two pre-defined free parameters for easily initializing positions
(get_pos_parameters()) and fluxes (get_flux_parameter()):

def get_pos_parameters():
return (

FreeParameter(lambda o: o.get_centroid_x(), Range(lambda v,o: (v-o.get_radius(),
→˓ v+o.get_radius()), RangeType.LINEAR)),

FreeParameter(lambda o: o.get_centroid_y(), Range(lambda v,o: (v-o.get_radius(),
→˓ v+o.get_radius()), RangeType.LINEAR))
)

def get_flux_parameter(type=FluxParameterType.ISO, scale=1):
func_map = {

FluxParameterType.ISO : 'get_iso_flux'
}
return FreeParameter(lambda o: getattr(o, func_map[type])() * scale, Range(lambda v,

→˓o: (v * 1E-3, v * 1E3), RangeType.EXPONENTIAL))

Note the use of lambda functions in the first argument to Range().

Dependent parameters

It is often useful to define dependencies between parameters. Dependent parameters are declared using the
DependentParameter() construct. For instance, one may wish to adjust the sizes of two components of a model
in parallel:

size1 = FreeParameter(lambda o: 2 * o.get_radius(), Range((0.01, 100.0), RangeType.
→˓EXPONENTIAL))
size2 = DependentParameter(lambda s: 1.2 * s, size1)

Parameter dependencies are useful for computing new output columns from fitted parameters:

MAG_ZEROPOINT = 33.568
mag = DependentParameter(lambda f: -2.5 * np.log10(f) + MAG_ZEROPOINT, flux)

Parameter dependencies may also be used to apply changes of variables for setting complex priors, as we shall see
in the next section.

Models

The full models 𝑚(𝑞) are defined as a sum of one or several 2D functions. These model components are added
using the add_model() function. For instance, for adding a point source model component one may insert

add_model(group, PointSourceModel(x, y, flux))

Composite models (e.g., a galaxy bulge plus a disk component) may be generated by inserting multiple
add_model() with the same measurement group. Model components need not be coaxial.

SourceXtractor++ currently supports the following models.

Constant: ConstantModel

This is the simplest model, which applies a constant offset to the image:

𝑚Constant = 𝑚0 (1.8)

22 Chapter 1. Contents

https://en.wikipedia.org/wiki/Coaxial

SourceXtractor++ Documentation, Release 1.0.0

Point source: PointSourceModel

The point source model is appropriate for representing unresolved sources such as stars. It
is a scaled delta function, and as such depends only on a coordinate vector 𝑟 = (𝑥, 𝑦) and
a flux 𝑚0.

𝑚POINTSOURCE(𝑟) = 𝑚0𝛿(𝑟) (1.9)

Sérsic: SersicModel

The Sérsic model has an elliptical shape with aspect ratio 𝜌 and position angle 𝜃, and a
Sérsic profile [13] with effective radius 𝑅𝑒 and Sérsic index 𝑛:

𝑚Sersic(𝑟) = 𝑚0 exp

(︃
−𝑏(𝑛)

(︂
𝑅

𝑅𝑒

)︂1/𝑛
)︃
, (1.10)

where 𝑏(𝑛) is the solution to

2𝛾[2𝑛, 𝑏(𝑛)] = Γ(2𝑛) (1.11)

An accurate approximation for the solution to 𝑏(𝑛) in (1.11) is [14]:

𝑏(𝑛) = 2𝑛− 1

3
+

4

405𝑛
+

46

25515𝑛2
+

131

1148175𝑛3

Exponential: ExponentialModel

The exponential model is a Sérsic model with fixed 𝑛 = 1. It is generally appropriate for
describing galaxy disks.

de Vaucouleurs: DeVaucouleursModel

The de Vaucouleurs model is a Sérsic model with fixed 𝑛 = 4. It can be a good fit to
elliptical galaxies and galaxy bulges.

Regularization

Although minimizing the (modified) weighted sum of least squares gives a solution that fits best the data, it does not
necessarily correspond to the most probable solution given what we know about celestial objects. The discrepancy
is particularly significant in very faint (SNR ≤ 20) and barely resolved galaxies. For instance, there is a tendency
to overestimate the elongation of such galaxies, known as the “noise bias” in the weak-lensing community [15, 16,
17, 18]. The second term in (1.3) implements a simple Tikhonov regularization scheme to mitigate this issue. This
penalty term acts as a Gaussian prior on the selected (free or dependent) parameters.

Priors are inserted using the add_prior() function. For instance, one can put a Gaussian prior on the flux, centered
on the initial isophotal guess from the detection image, with a 10% standard deviation:

flux = get_flux_parameter()
add_prior(flux, lambda o: o.get_iso_flux(), lambda o: 0.1 * o.get_iso_flux())

Non-Gaussian priors

Sometimes a Gaussian prior is unsuited to some parameters (e.g., to disfavor excessively low or high values, but not
both). In that case a change of variable must be applied. This is easily accomplished using a dependent parameter.
For example, to penalize Sérsic index values 𝑛 above 𝑛0, one can apply the change of variable:

𝑁 = 𝑒𝑛−𝑛0 , (1.12)

which can be implemented as (assuming 𝑛0 = 4 and a Gaussian prior on 𝑁 centered on 0 with unit standard
deviation):

1.6. Measuring 23

https://en.wikipedia.org/wiki/Dirac_delta_function
https://en.wikipedia.org/wiki/Sersic_profile
https://en.wikipedia.org/wiki/Galactic_disc
https://en.wikipedia.org/wiki/De_Vaucouleurs%27_law
https://en.wikipedia.org/wiki/Elliptical_galaxy
https://en.wikipedia.org/wiki/Bulge_(astronomy)
https://en.wikipedia.org/wiki/Tikhonov_regularization
https://en.wikipedia.org/wiki/Sersic_profile

SourceXtractor++ Documentation, Release 1.0.0

n = Freeparameter(2.0, Range((0.3, 8.0), RangeType.LINEAR))
n0 = 4
nc = DependentParameter(lambda nt: np.exp(nt - n0), n)
add_prior(nc, 0.0, 1.0)

Fig. 1.5 shows the resulting prior on 𝑛 , and its regularizing effect on the solution.

0 1 2 3 4 5 6 7 8

Sérsic index

0

2 0

4 0

6 0

8 0

100

120

n
u

m
b

e
r

without prior

with prior

Fig. 1.5: Effect of a non-Gaussian prior generated through a change of variable (see text). Left: Effective prior on
the Sérsic index. Right: Distribution of Sérsic indices obtained for Sérsic fits on noisy data before (blue) and after
(green) applying the prior.

Caution: Although any function valid over the parameter range could in principle be used for the change of
variable, only functions producing concave priors are likely to play nice with the current minimization algorithm
and lead to consistent results.

Combinations of parameters

Priors are also useful for penalizing some values taken by specific combinations of parameters. For example, the
following code applied to images taken in the 𝑔 and 𝑟 bands sets a Gaussian prior on the color index 𝑔 − 𝑟 of the
detected point sources (centered on 𝑔 − 𝑟 = 0.5, with standard deviation 0.3):

...
MAG_ZEROPOINT = 32.19
flux_g = get_flux_parameter()
flux_r = get_flux_parameter()
mag_g = DependentParameter(lambda f: -2.5 * np.log10(f) + MAG_ZEROPOINT, flux_g)
mag_r = DependentParameter(lambda f: -2.5 * np.log10(f) + MAG_ZEROPOINT, flux_r)
col = DependentParameter(lambda g,r: g - r, mag_g, mag_r)
add_prior(col, 0.5, 0.3)

group_g = mesgroup['g']
group_r = mesgroup['r']
add_model(group_g, PointSourceModel(x, y, flux_g))
add_model(group_r, PointSourceModel(x, y, flux_r))
add_output_column('mag_g', mag_g)
add_output_column('mag_r', mag_r)
...

Fig. 1.6 shows the impact of the prior on the color-magnitude diagram.

24 Chapter 1. Contents

https://en.wikipedia.org/wiki/Concave_function

SourceXtractor++ Documentation, Release 1.0.0

1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 2 5

g [mag]

-2

0

2

4

g
 -

 r

[m
a

g
]

without prior

with prior

Fig. 1.6: Effect of a Gaussian prior (centered on 0.5 mag with standard deviation 0.3 mag) on 𝑔 − 𝑟 source color
measurements.

Minimization

Minimization of the loss function 𝜆(𝑞) is carried out using the Levenberg-Marquardt algorithm. Two Levenberg-
Marquardt engines are supported in the current version of SourceXtractor++: the LevMar library [19], and
the GSL implementation. LevMar approximates the Jacobian matrix of the model from finite differences using
Broyden’s [20] rank one updates, which results in less evaluations of the model and ≈ 30% faster processing. The
default engine is levmar, but can be switched to gsl if preferred using the set_engine() function, e.g.:

set_engine('gsl')

The fit is done inside a disk which diameter is scaled to include the isophotal footprint of the object, plus the
FWHM of the PSF, plus a 20 % margin.

1𝜎 uncertainty estimates are provided for most measurement parameters; they are obtained from the full covariance
matrix of the fit, which is itself computed by inverting the approximate Hessian matrix of 𝜆(𝑞) at the solution.

1.7 Configuration API Reference

1.7.1 argv

class Arguments(**kwargs)
Bases: object

This helper class automatically parses the arguments received by the Python script via sys.argv, using the set
of key-value parameters received on its constructor to cast the types and define the defaults.

Parameters kwargs – A set of key-values with the defaults, or the types of the expected values.
For instance, it is valid to do both:

key1 = 32. key2 = float

For the first case - a value -, if no value is passed via sys.argv, this will be the default. Oth-
erwise, its type (float) will be used to cast the received value.

For the second case - a type -, if no value is passed via sys.argv, the parameter will default
to None. Otherwise, the type will be used to cast the received value.

Callables are also accepted. They should accept to be called with no parameters, returning
the default, or with a single string, returning the parsed value.

Values can be accessed later as attributes:

instance.key1 and instance.key2

1.7. Configuration API Reference 25

http://en.wikipedia.org/wiki/Levenberg%E2%80%93Marquardt_algorithm
http://users.ics.forth.gr/~lourakis/levmar
https://www.gnu.org/software/gsl
https://en.wikipedia.org/wiki/Hessian_matrix

SourceXtractor++ Documentation, Release 1.0.0

Raises

• ValueError – If the cast of the parameter failed (i.e. an invalid integer or float format)

• KeyError – If additional unknown parameters are received

class FileList(value)
Bases: object

Helper class for receiving a globing pattern as a parameter, defining a list of files - i.e. measurement images
or PSFs. It is an iterable, and can be passed directly to load_fits_images.

Parameters value (str) – A file globing expression. i.e “.psf”, “band_[r|i|g]_.fits” or similar.
The result is always stored and returned in alphabetical order, so the order between two file
lists - i.e frame image and PSF - is consistent and a matching can be done easily between
them.

See also:

glob.glob Return a list of paths matching a pathname pattern.

1.7.2 output

add_output_column(name, params)
Add a new set of columns to the output catalog.

Parameters

• name (str) – Name/prefix of the new set of columns

• params (list of columns) – List of properties to add to the output with the given
name/prefix. They must be subtype of one of the known ones: ParameterBase for model
fitting, or Aperture for aperture photometry.

Raises

• ValueError – If the name has already been used

• TypeError – If any of the parameters are not of a known type (see params)

See also:

aperture.add_aperture_photometry, model_fitting.ParameterBase

print_output_columns(file=<_io.TextIOWrapper name='<stderr>' mode='w' encoding='UTF-8'>)
Print a human-readable representation of the configured output columns.

Parameters file (file object) – Where to print the representation. Defaults to sys.stderr

1.7.3 measurement_images

class ByKeyword(key)
Bases: object

Callable that can be used to split an ImageGroup by a keyword value (i.e. FILTER).

Parameters key (str) – FITS header keyword (i.e. FILTER)

See also:

ImageGroup.split

class ByPattern(key, pattern)
Bases: object

Callable that can be used to split an ImageGroup by a keyword value (i.e. FILTER), applying a regular
expression and using the first matching group as key.

26 Chapter 1. Contents

SourceXtractor++ Documentation, Release 1.0.0

Parameters

• key (str) – FITS header keyword

• pattern (str) – Regular expression. The first matching group will be used as grouping
key.

See also:

ImageGroup.split

class FitsFile(*args: Any, **kwargs: Any)
Bases: _SourceXtractorPy.

class ImageGroup(**kwargs)
Bases: object

Models the grouping of images. Measurement can not be made directly on instances of this type. The
configuration must be “frozen” before creating a MeasurementGroup

See also:

MeasurementGroup

add_images(images)
Add new images to the group.

Parameters images (list of, or a single, MeasurementImage) –

Raises ValueError – If the group has been split, no new images can be added.

add_subgroup(name, group)
Add a subgroup to a group.

Parameters

• name (str) – The new of the new group

• group (ImageGroup) –

is_leaf()

Returns True if the group is a leaf group

Return type bool

print(prefix='', show_images=False, file=<_io.TextIOWrapper name='<stderr>' mode='w'
encoding='UTF-8'>)

Print a human-readable representation of the group.

Parameters

• prefix (str) – Print each line with this prefix. Used internally for indentation.

• show_images (bool) – Show the images belonging to a leaf group.

• file (file object) – Where to print the representation. Defaults to sys.stderr

split(grouping_method)
Splits the group in various subgroups, applying a filter on the contained images. If the group has already
been split, applies the split to each subgroup.

Parameters grouping_method (callable) – A callable that receives as a parameter the
list of contained images, and returns a list of tuples, with the grouping key value, and the
list of grouped images belonging to the given key.

See also:

ByKeyword , ByPattern

Raises ValueError – If some images have not been grouped by the callable.

1.7. Configuration API Reference 27

SourceXtractor++ Documentation, Release 1.0.0

class MeasurementGroup(image_group, is_subgroup=False)
Bases: object

Once an instance of this class is created from an ImageGroup, its configuration is “frozen”. i.e. no new
images can be added, or no new grouping applied.

Parameters image_group (ImageGroup) –

is_leaf()

Returns True if the group is a leaf group

Return type bool

print(prefix='', show_images=False, file=<_io.TextIOWrapper name='<stderr>' mode='w'
encoding='UTF-8'>)

Print a human-readable representation of the group.

Parameters

• prefix (str) – Print each line with this prefix. Used internally for indentation.

• show_images (bool) – Show the images belonging to a leaf group.

• file (file object) – Where to print the representation. Defaults to sys.stderr

class MeasurementImage(*args: Any, **kwargs: Any)
Bases: _SourceXtractorPy.

A MeasurementImage is the processing unit for SourceXtractor++. Measurements and model fitting can be
done over one, or many, of them. It models the image, plus its associated weight file, PSF, etc.

Parameters

• fits_file (str or FitsFile object) – The path to a FITS image, or an instance
of FitsFile

• psf_file (str) – The path to a PSF. It can be either a FITS image, or a PSFEx model.

• weight_file (str or FitsFile) – The path to a FITS image with the pixel weights,
or an instance of FitsFile

• gain (float) – Image gain. If None, gain_keyword will be used instead.

• gain_keyword (str) – Keyword for the header containing the gain.

• saturation (float) – Saturation value. If None, saturation_keyword will be used
instead.

• saturation_keyword (str) – Keyword for the header containing the saturation value.

• flux_scale (float) – Flux scaling. Each pixel value will be multiplied by this. If
None, flux_scale_keyword will be used instead.

• flux_scale_keyword (str) – Keyword for the header containing the flux scaling.

• weight_type (str) – The type of the weight image. It must be one of:

– none The image itself is used to compute internally a constant variance (default)

– background The image itself is used to compute internally a variance map

– rms The weight image must contain a weight-map in units of absolute standard de-
viations (in ADUs per pixel).

– variance The weight image must contain a weight-map in units of relative variance.

– weight The weight image must contain a weight-map in units of relative weights. The
data are converted to variance units.

• weight_absolute (bool) – If False, the weight map will be scaled according to an
absolute variance map built from the image itself.

28 Chapter 1. Contents

SourceXtractor++ Documentation, Release 1.0.0

• weight_scaling (float) – Apply an scaling to the weight map.

• weight_threshold (float) – Pixels with weights beyond this value are treated just
like pixels discarded by the masking process.

• constant_background (float) – If set a constant background of that value is assumed
for the image instead of using automatic detection

• image_hdu (int) – For multi-extension FITS file specifies the HDU number for the
image. Default 0 (primary HDU)

• psf_hdu (int) – For multi-extension FITS file specifies the HDU number for the psf.
Defaults to the same value as image_hdu

• weight_hdu (int) – For multi-extension FITS file specifies the HDU number for the
weight. Defaults to the same value as image_hdu

load_fits_image(image, psf=None, weight=None, **kwargs)
Creates an image group with the images of a (possibly multi-HDU) single FITS file.

If image is multi-hdu, psf and weight can either be multi hdu or lists of individual files.

In any case, they are matched in order and HDUs not containing images (two dimensional arrays) are ignored.

Parameters

• image – The filename of the FITS file containing the image(s)

• psf – psf file or list of psf files

• weight – FITS file for the weight image or a list of such files

Returns A ImageGroup representing the images

load_fits_images(images, psfs=None, weights=None, **kwargs)
Creates an image group for the given images.

Parameters

• images (list of str) –

A list of relative paths to the images FITS files. Can also be single string in which case,
this function acts like load_fits_image

• psfs (list of str) – A list of relative paths to the PSF FITS files (optional). It must
match the length of image_list or be None.

• weights (list of str) – A list of relative paths to the weight files (optional). It must
match the length of image_list or be None.

Returns A ImageGroup representing the images

Return type ImageGroup

Raises ValueError – In case of mismatched list of files

print_measurement_images(file=<_io.TextIOWrapper name='<stderr>' mode='w' encoding='UTF-8'>)
Print a human-readable representation of the configured measurement images.

Parameters file (file object) – Where to print the representation. Defaults to sys.stderr

1.7. Configuration API Reference 29

SourceXtractor++ Documentation, Release 1.0.0

1.7.4 aperture

add_aperture_photometry(target, apertures)
Flux measurement from the image above the background inside a circular aperture.

Parameters

• target (MeasurementImage object, or leaf MeasurementGroup object
with a single image, or a list of either) – Target images on which to
measure the aperture photometry. Leaf MeasurementGroup with a single image are
accepted as a convenience.

• apertures (float, or list of float) – Diameter of the aperture. As different
MeasurementImage may not be aligned, nor have equivalent pixel size, the aperture is
interpreted as diameter in pixels of a circle on the detection image. A transformation
will be applied for each frame, so the covered area is equivalent.

Returns An Aperture object is an internal representation of a property on the measurement frame
that contains the apertures. To actually get the measurements on the output catalog, you need
to add explicitly them to the output.

Return type list of Aperture objects

See also:

add_output_column

Notes

This property will generate five columns with the prefix specified by add_output_column: - _flux and
_flux_err, for the flux and its associated error - _mag and _mag_err, for the magnitude and its associated
error - _flags, to mark, for instance, saturation, boundary conditions, etc.

For M apertures and N images, the cells on the output column will be an array of MxN fluxes.

Examples

>>> measurement_group = MeasurementGroup(load_fits_images(frames, psfs))
>>> all_apertures = []
>>> for img in measurement_group:
>>> all_apertures.extend(add_aperture_photometry(img, [5, 10, 20]))
>>> add_output_column('aperture', all_apertures)

1.7.5 model_fitting

class ConstantModel(*args: Any, **kwargs: Any)
Bases: _SourceXtractorPy.

A model that is constant through all the image.

Parameters value (ParameterBase or float) – Value to add to the value of all pixels from
the model.

to_string(show_params=False)
Return a human readable representation of the model.

Parameters show_params (bool) – If True, include information about the parameters.

Returns

Return type str

30 Chapter 1. Contents

SourceXtractor++ Documentation, Release 1.0.0

class ConstantParameter(*args: Any, **kwargs: Any)
Bases: _SourceXtractorPy.

A parameter with a single value that remains constant. It will not be fitted.

Parameters value (float, or callable that receives a source and returns a
float) – Value for this parameter

get_value()

Returns Receives a source and returns a value for the parameter

Return type callable

class CoordinateModelBase(*args: Any, **kwargs: Any)
Bases: _SourceXtractorPy.

Base class for positioned models with a flux. It can not be used directly.

Parameters

• x_coord (ParameterBase or float) – X coordinate (in the detection image)

• y_coord (ParameterBase or float) – Y coordinate (in the detection image)

• flux (ParameterBase or float) – Total flux

class DeVaucouleursModel(*args: Any, **kwargs: Any)
Bases: _SourceXtractorPy.

Model a source with a De Vaucouleurs profile (Sersic model with an index of 4)

Parameters

• x_coord (ParameterBase or float) – X coordinate (in the detection image)

• y_coord (ParameterBase or float) – Y coordinate (in the detection image)

• flux (ParameterBase or float) – Total flux

• effective_radius (ParameterBase or float) – Ellipse semi-major axis, in pixels
on the detection image.

• aspect_ratio (ParameterBase or float) – Ellipse ratio.

• angle (ParameterBase or float) – Ellipse rotation, in radians

to_string(show_params=False)
Return a human readable representation of the model.

Parameters show_params (bool) – If True, include information about the parameters.

Returns

Return type str

class DependentParameter(*args: Any, **kwargs: Any)
Bases: _SourceXtractorPy.

A DependentParameter is not fitted by itself, but its value is derived from another Parameters, whatever their
type: FreeParameter, ConstantParameter, or other DependentParameter

Parameters

• func (callable) – A callable that will be called with all the parameters specified in
this constructor each time a new evaluation is needed.

• params (list of ParameterBase) – List of parameters on which this DependentPa-
rameter depends.

1.7. Configuration API Reference 31

SourceXtractor++ Documentation, Release 1.0.0

Examples

>>> flux = get_flux_parameter()
>>> mag = DependentParameter(lambda f: -2.5 * np.log10(f) + args.mag_zeropoint,␣
→˓flux)
>>> add_output_column('mf_mag_' + band, mag)

class ExponentialModel(*args: Any, **kwargs: Any)
Bases: _SourceXtractorPy.

Model a source with an exponential profile (Sersic model with an index of 1)

Parameters

• x_coord (ParameterBase or float) – X coordinate (in the detection image)

• y_coord (ParameterBase or float) – Y coordinate (in the detection image)

• flux (ParameterBase or float) – Total flux

• effective_radius (ParameterBase or float) – Ellipse semi-major axis, in pixels
on the detection image.

• aspect_ratio (ParameterBase or float) – Ellipse ratio.

• angle (ParameterBase or float) – Ellipse rotation, in radians

to_string(show_params=False)
Return a human readable representation of the model.

Parameters show_params (bool) – If True, include information about the parameters.

Returns

Return type str

class FluxParameterType
Bases: object

Possible flux types to use as initial value for the flux parameter. Right now, only isophotal is supported.

class FreeParameter(*args: Any, **kwargs: Any)
Bases: _SourceXtractorPy.

A parameter that will be fitted by the model fitting engine.

Parameters

• init_value (float or callable that receives a source, and returns a
float) – Initial value for the parameter.

• range (instance of Range or Unbounded) – Defines if this parameter is un-
bounded or bounded, and how.

See also:

Unbounded , Range

32 Chapter 1. Contents

SourceXtractor++ Documentation, Release 1.0.0

Examples

>>> sersic = FreeParameter(2.0, Range((1.0, 7.0), RangeType.LINEAR))

get_init_value()

Returns Receives a source, and returns an initial value for the parameter.

Return type callable

get_range()

Returns

Return type Unbounded or Range

class ModelBase(*args: Any, **kwargs: Any)
Bases: _SourceXtractorPy.

Base class for all models.

class ParameterBase(*args: Any, **kwargs: Any)
Bases: _SourceXtractorPy.

Base class for all model fitting parameter types. Can not be used directly.

class PointSourceModel(*args: Any, **kwargs: Any)
Bases: _SourceXtractorPy.

Models a source as a point, spread by the PSF.

Parameters

• x_coord (ParameterBase or float) – X coordinate (in the detection image)

• y_coord (ParameterBase or float) – Y coordinate (in the detection image)

• flux (ParameterBase or float) – Total flux

to_string(show_params=False)
Return a human readable representation of the model.

Parameters show_params (bool) – If True, include information about the parameters.

Returns

Return type str

class Prior(*args: Any, **kwargs: Any)
Bases: _SourceXtractorPy.

Model a Gaussian prior on a given parameter.

Parameters

• param (ParameterBase) – Model fitting parameter

• value (float or callable that receives a source and returns a
float) – Mean of the Gaussian

• sigma (float or callable that receives a source and returns a
float) – Standard deviation of the Gaussian

class Range(limits, type)
Bases: object

Limit, and normalize, the range of values for a model fitting parameter.

Parameters

1.7. Configuration API Reference 33

SourceXtractor++ Documentation, Release 1.0.0

• limits (a tuple (min, max), or a callable that receives a source,
and returns a tuple (min, max)) –

• type (RangeType) –

Notes

RangeType.LINEAR Normalized to engine space using a sigmoid function

𝑒𝑛𝑔𝑖𝑛𝑒 = ln
𝑤𝑜𝑟𝑙𝑑−𝑚𝑖𝑛

𝑚𝑎𝑥− 𝑤𝑜𝑟𝑙𝑑

𝑤𝑜𝑟𝑙𝑑 = 𝑚𝑖𝑛 +
𝑚𝑎𝑥−𝑚𝑖𝑛

1 + 𝑒𝑒𝑛𝑔𝑖𝑛𝑒

RangeType.EXPONENTIAL Normalized to engine space using an exponential sigmoid function

𝑒𝑛𝑔𝑖𝑛𝑒 = ln

(︂
ln(𝑤𝑜𝑟𝑙𝑑/𝑚𝑖𝑛)

ln(𝑚𝑎𝑥/𝑤𝑜𝑟𝑙𝑑)

)︂
𝑤𝑜𝑟𝑙𝑑 = 𝑚𝑖𝑛 * 𝑒

ln(𝑚𝑎𝑥/𝑚𝑖𝑛)

(1+𝑒−𝑒𝑛𝑔𝑖𝑛𝑒)

get_limits()

Returns Receives a source, and returns a tuple (min, max)

Return type callable

get_type()

Returns

Return type RangeType

class RangeType(value)
Bases: enum.Enum

An enumeration.

class SersicModel(*args: Any, **kwargs: Any)
Bases: _SourceXtractorPy.

Model a source with a Sersic profile.

Parameters

• x_coord (ParameterBase or float) – X coordinate (in the detection image)

• y_coord (ParameterBase or float) – Y coordinate (in the detection image)

• flux (ParameterBase or float) – Total flux

• effective_radius (ParameterBase or float) – Ellipse semi-major axis, in pixels
on the detection image.

• aspect_ratio (ParameterBase or float) – Ellipse ratio.

• angle (ParameterBase or float) – Ellipse rotation, in radians

• n (ParameterBase or float) – Sersic index

to_string(show_params=False)
Return a human readable representation of the model.

Parameters show_params (bool) – If True, include information about the parameters.

Returns

34 Chapter 1. Contents

SourceXtractor++ Documentation, Release 1.0.0

Return type str

class SersicModelBase(*args: Any, **kwargs: Any)
Bases: _SourceXtractorPy.

Base class for the Sersic, Exponential and de Vaucouleurs models. It can not be used directly.

Parameters

• x_coord (ParameterBase or float) – X coordinate (in the detection image)

• y_coord (ParameterBase or float) – Y coordinate (in the detection image)

• flux (ParameterBase or float) – Total flux

• effective_radius (ParameterBase or float) – Ellipse semi-major axis, in pixels
on the detection image.

• aspect_ratio (ParameterBase or float) – Ellipse ratio.

• angle (ParameterBase or float) – Ellipse rotation, in radians

class Unbounded(normalization_factor=1)
Bases: object

Unbounded, but normalize, value of a model fitting parameter

Parameters normalization_factor (float, or a callable that receives the
initial value parameter value and a source,) – and returns a float The world
value which will be normalized to 1 in engine coordinates

get_normalization_factor()

Returns Receives the initial parameter value and a source, and returns the world value which
will be normalized to 1 in engine coordinates

Return type callable

class WorldCoordinate(ra, dec)
Bases: object

Coordinates in right ascension and declination

Parameters

• ra (float) – Right ascension

• dec (float) – Declination

add_model(group, model)
Add a model to be fitted to the given group.

Parameters

• group (MeasurementGroup) –

• model (ModelBase) –

add_prior(param, value, sigma)
Add a prior to the given parameter.

Parameters

• param (ParameterBase) –

• value (float or callable that receives a source and returns a
float) – Mean of the Gaussian

• sigma (float or callable that receives a source and returns a
float) – Standard deviation of the Gaussian

1.7. Configuration API Reference 35

SourceXtractor++ Documentation, Release 1.0.0

get_flux_parameter(type=1, scale=1)
Convenience function for the flux parameter.

Parameters

• type (int) – One of the values defined in FluxParameterType

• scale (float) – Scaling of the initial flux. Defaults to 1.

Returns flux – Flux parameter, starting at the flux defined by type, and limited to +/- 1e3 times
the initial value.

Return type FreeParameter

get_pos_parameters()
Convenience function for the position parameter X and Y.

Returns

• x (FreeParameter) – X coordinate, starting at the X coordinate of the centroid and lin-
early limited to X +/- the object radius.

• y (FreeParameter) – Y coordinate, starting at the Y coordinate of the centroid and lin-
early limited to Y +/- the object radius.

Notes

X and Y are fitted on the detection image X and Y coordinates. Internally, these are translated to measurement
images using the WCS headers.

get_position_angle(x1, y1, x2, y2)
Get the position angle in sky coordinates for two points defined in pixels on the detection image.

Parameters

• x1 –

• y1 –

• x2 –

• y2 –

Returns

Return type Position angle in degrees, normalized to -/+ 90

get_separation_angle(x1, y1, x2, y2)
Get the separation angle in sky coordinates for two points defined in pixels on the detection image.

Parameters

• x1 (float) –

• y1 (float) –

• x2 (float) –

• y2 (float) –

Returns

Return type Separation in degrees

get_sky_coord(x, y)
Transform an (X, Y) in pixel coordinates on the detection image to astropy SkyCoord.

Parameters

• x (float) –

• y (float) –

36 Chapter 1. Contents

SourceXtractor++ Documentation, Release 1.0.0

Returns

Return type SkyCoord

get_world_parameters(x, y, radius, angle, ratio)
Convenience function for generating five dependent parameters, in world coordinates, for the position and
shape of a model.

Parameters

• x (ParameterBase) –

• y (ParameterBase) –

• radius (ParameterBase) –

• angle (ParameterBase) –

• ratio (ParameterBase) –

Returns

• ra (DependentParameter) – Right ascension

• dec (DependentParameter) – Declination

• rad (DependentParameter) – Radius as degrees

• angle (DependentParameter) – Angle in degrees

• ratio (DependentParameter) – Aspect ratio. It has to be recomputed as the axis of the
ellipse may have different ratios in image coordinates than in world coordinates

Examples

>>> flux = get_flux_parameter()
>>> x, y = get_pos_parameters()
>>> radius = FreeParameter(lambda o: o.get_radius(), Range(lambda v, o: (.01 * v,
→˓ 100 * v), RangeType.EXPONENTIAL))
>>> angle = FreeParameter(lambda o: o.get_angle(), Range((-np.pi, np.pi),␣
→˓RangeType.LINEAR))
>>> ratio = FreeParameter(1, Range((0, 10), RangeType.LINEAR))
>>> add_model(group, ExponentialModel(x, y, flux, radius, ratio, angle))
>>> ra, dec, wc_rad, wc_angle, wc_ratio = get_world_parameters(x, y, radius,␣
→˓angle, ratio)
>>> add_output_column('mf_world_angle', wc_angle)

get_world_position_parameters(x, y)
Convenience function for generating two dependent parameter with world (alpha, delta) coordinates from
image (X, Y) coordinates.

Parameters

• x (ParameterBase) –

• y (ParameterBase) –

Returns

• ra (DependentParameter)

• dec (DependentParameter)

See also:

get_pos_parameters

1.7. Configuration API Reference 37

SourceXtractor++ Documentation, Release 1.0.0

Examples

>>> x, y = get_pos_parameters()
>>> ra, dec = get_world_position_parameters(x, y)
>>> add_output_column('mf_ra', ra)
>>> add_output_column('mf_dec', dec)

pixel_to_world_coordinate(x, y)
Transform an (X, Y) in pixel coordinates on the detection image to (RA, DEC) in world coordinates. :param
x: :type x: float :param y: :type y: float

Returns

Return type WorldCoordinate

print_model_fitting_info(group, show_params=False, prefix='', file=<_io.TextIOWrapper
name='<stderr>' mode='w' encoding='UTF-8'>)

Print a human-readable representation of the configured models.

Parameters

• group (MeasurementGroup) – Print the models for this group.

• show_params (bool) – If True, print also the parameters that belong to the model

• prefix (str) – Prefix each line with this string. Used internally for indentation.

• file (file object) – Where to print the representation. Defaults to sys.stderr

print_parameters(file=<_io.TextIOWrapper name='<stderr>' mode='w' encoding='UTF-8'>)
Print a human-readable representation of the configured model fitting parameters.

Parameters file (file object) – Where to print the representation. Defaults to sys.stderr

radius_to_wc_angle(x, y, rad)
Transform a radius in pixels on the detection image to a radius in sky coordinates.

Parameters

• x (float) –

• y (float) –

• rad (float) –

Returns

Return type Radius in degrees

set_coordinate_system(cs)
Set the global coordinate system. This function is used internally by SourceXtractor++.

set_engine(engine)

Parameters engine (str) – Minimization engine for the model fitting : levmar or gsl

set_max_iterations(iterations)

Parameters iterations (int) – Max number of iterations for the model fitting.

set_modified_chi_squared_scale(scale)

Parameters scale (float) – Sets u0, as used by the modified chi squared residual comparator,
a function that reduces the effect of large deviations. Refer to the SourceXtractor++ docu-
mentation for a better explanation of how residuals are computed and how this value affects
the model fitting.

38 Chapter 1. Contents

SourceXtractor++ Documentation, Release 1.0.0

1.7. Configuration API Reference 39

SourceXtractor++ Documentation, Release 1.0.0

40 Chapter 1. Contents

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

41

SourceXtractor++ Documentation, Release 1.0.0

42 Chapter 2. Indices and tables

BIBLIOGRAPHY

[1] E. Bertin and S. Arnouts, 1996. SExtractor: Software for source extraction. A&AS, 117:393–404.

[2] D. C. Wells, E. W. Greisen, and R. H. Harten, 1981. FITS - a Flexible Image Transport System. A&AS, 44:363.

[3] E. W. Greisen and M. R. Calabretta, 2002. Representations of world coordinates in FITS. A&A,
395:1061–1075.

[4] M. R. Calabretta and E. W. Greisen, 2002. Representations of celestial coordinates in FITS. A&A,
395:1077–1122.

[5] P. B. Stetson, 1987. DAOPHOT - A computer program for crowded-field stellar photometry. PASP,
99:191–222.

[6] G. S. Da Costa, 1992. Basic Photometry Techniques. In S. B. Howell, editor, Astronomical CCD Observing
and Reduction Techniques, volume 23 of Astronomical Society of the Pacific Conference Series, 90. 1992.

[7] A. Stuart and K. Ord. Kendall's Advanced Theory of Statistics: Volume 1: Distribution Theory. Num-
ber vol. 1 ;vol. 1994 in Kendall's Advanced Theory of Statistics. Wiley, 2009. ISBN 9780340614303. URL:
https://books.google.fr/books?id=tW18thQWJQIC.

[8] J. F. Jarvis and J. A. Tyson, 1981. FOCAS - Faint Object Classification and Analysis System. AJ, 86:476–495.

[9] L. Infante, 1987. A faint object processing software - Description and testing. A&A, 183:177–184.

[10] R. G. Kron, 1980. Photometry of a complete sample of faint galaxies. ApJS, 43:305–325.

[11] C. E. Duchon, 1979. Lanczos Filtering in One and Two Dimensions. Journal of Applied Meteorology,
18:1016–1022.

[12] C. Kanzow, N. Yamashita, and M. Fukushima, 2004. Levenberg-Marquardt methods with strong local con-
vergence properties for solving nonlinear equations with convex constraints. Journal of Computational and
Applied Mathematics, 172(2):375–397.

[13] J. L. Sérsic. Atlas de Galaxias Australes. Cordoba, Argentina: Observatorio Astronomico, 1968, 1968.

[14] L. Ciotti and G. Bertin, 1999. Analytical properties of the R^(1/m) law. A&A, 352:447–451.

[15] C. M. Hirata, R. Mandelbaum, U. Seljak, J. Guzik, N. Padmanabhan, C. Blake, J. Brinkmann, T. Budávari,
A. Connolly, I. Csabai, R. Scranton, and A. S. Szalay, 2004. Galaxy-galaxy weak lensing in the Sloan Digital
Sky Survey: intrinsic alignments and shear calibration errors. MNRAS, 353:529–549.

[16] P. Melchior and M. Viola, 2012. Means of confusion: how pixel noise affects shear estimates for weak grav-
itational lensing. MNRAS, 424:2757–2769.

[17] A. Refregier, T. Kacprzak, A. Amara, S. Bridle, and B. Rowe, 2012. Noise bias in weak lensing shape mea-
surements. MNRAS, 425:1951–1957.

[18] T. Kacprzak, J. Zuntz, B. Rowe, S. Bridle, A. Refregier, A. Amara, L. Voigt, and M. Hirsch, 2012. Measure-
ment and calibration of noise bias in weak lensing galaxy shape estimation. MNRAS, 427:2711–2722.

[19] M.I.A. Lourakis, 2004. Levmar: levenberg-marquardt nonlinear least squares algorithms in C/C++.

[20] C. Broyden, 1965. Mathematics of Computation, 19:577–593.

43

http://ui.adsabs.harvard.edu/abs/1996A&AS..117..393B
https://ui.adsabs.harvard.edu/abs/1981A&AS...44..363W
https://ui.adsabs.harvard.edu/abs/2002A&A...395.1061G
https://ui.adsabs.harvard.edu/abs/2002A&A...395.1077C
https://ui.adsabs.harvard.edu/abs/1987PASP...99..191S
https://ui.adsabs.harvard.edu/abs/1992ASPC...23...90D
https://books.google.fr/books?id=tW18thQWJQIC
https://ui.adsabs.harvard.edu/abs/1981AJ.....86..476J
https://ui.adsabs.harvard.edu/abs/1987A&A...183..177I
https://ui.adsabs.harvard.edu/abs/1980ApJS...43..305K
http://dx.doi.org/10.1175/1520-0450(1979)018\T1\textless {}1016:LFIOAT\T1\textgreater {}2.0.CO;2
http://www.sciencedirect.com/science/article/pii/S0377042704001256
http://www.sciencedirect.com/science/article/pii/S0377042704001256
https://ui.adsabs.harvard.edu/abs/1999A&A...352..447C
https://ui.adsabs.harvard.edu/abs/2004MNRAS.353..529H
https://ui.adsabs.harvard.edu/abs/2004MNRAS.353..529H
https://ui.adsabs.harvard.edu/abs/2012MNRAS.424.2757M
https://ui.adsabs.harvard.edu/abs/2012MNRAS.424.2757M
https://ui.adsabs.harvard.edu/abs/2012MNRAS.425.1951R
https://ui.adsabs.harvard.edu/abs/2012MNRAS.425.1951R
https://ui.adsabs.harvard.edu/abs/2012MNRAS.427.2711K
https://ui.adsabs.harvard.edu/abs/2012MNRAS.427.2711K
http://users.ics.forth.gr/\protect \unhbox \voidb@x \penalty \@M \ lourakis/levmar/

SourceXtractor++ Documentation, Release 1.0.0

44 Bibliography

PYTHON MODULE INDEX

c
config.aperture, 30
config.argv, 25
config.measurement_images, 26
config.model_fitting, 30
config.output, 26

45

SourceXtractor++ Documentation, Release 1.0.0

46 Python Module Index

INDEX

A
add_aperture_photometry() (in module con-

fig.aperture), 30
add_images() (ImageGroup method), 27
add_model() (in module config.model_fitting), 35
add_output_column() (in module config.output), 26
add_prior() (in module config.model_fitting), 35
add_subgroup() (ImageGroup method), 27
Arguments (class in config.argv), 25

B
ByKeyword (class in config.measurement_images), 26
ByPattern (class in config.measurement_images), 26

C
config.aperture

module, 30
config.argv

module, 25
config.measurement_images

module, 26
config.model_fitting

module, 30
config.output

module, 26
ConstantModel (class in config.model_fitting), 30
ConstantParameter (class in config.model_fitting),

30
CoordinateModelBase (class in config.model_fitting),

31

D
DependentParameter (class in config.model_fitting),

31
DeVaucouleursModel (class in config.model_fitting),

31

E
ExponentialModel (class in config.model_fitting), 32

F
FileList (class in config.argv), 26
FitsFile (class in config.measurement_images), 27
FluxParameterType (class in config.model_fitting),

32
FreeParameter (class in config.model_fitting), 32

G
get_flux_parameter() (in module con-

fig.model_fitting), 35
get_init_value() (FreeParameter method), 33
get_limits() (Range method), 34
get_normalization_factor() (Unbounded

method), 35
get_pos_parameters() (in module con-

fig.model_fitting), 36
get_position_angle() (in module con-

fig.model_fitting), 36
get_range() (FreeParameter method), 33
get_separation_angle() (in module con-

fig.model_fitting), 36
get_sky_coord() (in module config.model_fitting),

36
get_type() (Range method), 34
get_value() (ConstantParameter method), 31
get_world_parameters() (in module con-

fig.model_fitting), 37
get_world_position_parameters() (in module

config.model_fitting), 37

I
ImageGroup (class in config.measurement_images), 27
is_leaf() (ImageGroup method), 27
is_leaf() (MeasurementGroup method), 28

L
load_fits_image() (in module con-

fig.measurement_images), 29
load_fits_images() (in module con-

fig.measurement_images), 29

M
MeasurementGroup (class in con-

fig.measurement_images), 28
MeasurementImage (class in con-

fig.measurement_images), 28
ModelBase (class in config.model_fitting), 33
module

config.aperture, 30
config.argv, 25
config.measurement_images, 26
config.model_fitting, 30
config.output, 26

47

SourceXtractor++ Documentation, Release 1.0.0

P
ParameterBase (class in config.model_fitting), 33
pixel_to_world_coordinate() (in module con-

fig.model_fitting), 38
PointSourceModel (class in config.model_fitting), 33
print() (ImageGroup method), 27
print() (MeasurementGroup method), 28
print_measurement_images() (in module con-

fig.measurement_images), 29
print_model_fitting_info() (in module con-

fig.model_fitting), 38
print_output_columns() (in module config.output),

26
print_parameters() (in module con-

fig.model_fitting), 38
Prior (class in config.model_fitting), 33

R
radius_to_wc_angle() (in module con-

fig.model_fitting), 38
Range (class in config.model_fitting), 33
RangeType (class in config.model_fitting), 34

S
SersicModel (class in config.model_fitting), 34
SersicModelBase (class in config.model_fitting), 35
set_coordinate_system() (in module con-

fig.model_fitting), 38
set_engine() (in module config.model_fitting), 38
set_max_iterations() (in module con-

fig.model_fitting), 38
set_modified_chi_squared_scale() (in module

config.model_fitting), 38
split() (ImageGroup method), 27

T
to_string() (ConstantModel method), 30
to_string() (DeVaucouleursModel method), 31
to_string() (ExponentialModel method), 32
to_string() (PointSourceModel method), 33
to_string() (SersicModel method), 34

U
Unbounded (class in config.model_fitting), 35

W
WorldCoordinate (class in config.model_fitting), 35

48 Index

	Contents
	Introduction
	License
	Code
	Documentation

	Installing the software
	Hardware requirements
	Terminal
	Memory
	CPUs

	Obtaining SourceXtractor++
	From Fedora or EPEL repositories
	From Anaconda Cloud
	From Sources

	Using SourceXtractor++
	Input files
	Detection and measurement images
	Weight-maps
	Flag-maps
	PSF models

	Output
	Catalog
	Output properties
	Diagnostic files

	Configuration
	The configuration file
	Creating a configuration file
	Format of the configuration file
	Configuration parameter list

	Processing
	Modeling the background
	Background estimation
	Background map
	Configuration and tuning
	Computing cost

	Weighting
	Effect of weighting
	Weight-map formats
	Detection weight-map
	Measurement weight-map

	Flagging
	External flags

	Measuring
	The measurement configuration script
	Measurement images
	Grouping and splitting
	Image groups
	Splitting
	Accessing subgroups
	Measurement groups

	Measurements
	Isophotal measurements
	Position and shape
	Photometry

	Aperture photometry
	Fixed-aperture flux
	Automatic aperture flux

	Model fitting
	Fitting procedure
	Modified least squares
	Configuring model-fitting
	Model parameters
	Constant parameters
	Free parameters
	Parameter range
	Predefined free parameters
	Dependent parameters

	Models
	Regularization
	Non-Gaussian priors
	Combinations of parameters

	Minimization

	Configuration API Reference
	argv
	output
	measurement_images
	aperture
	model_fitting

	Indices and tables
	Bibliography
	Python Module Index
	Index

